5 RETROANÁLISE DE CASO HISTÓRICO

5.1. CARACTERÍSTICAS DOS POÇOS DA PETROBRÁS

Os 22 poços de petróleo da bacia de Campos analisados neste trabalho localizam-se no Estado de Sergipe e, conforme indicam os dados da figura 5.1, em 11 deles ocorreu refluxo do material de sustentação da fratura durante a fase de produção de óleo, variando de 1,45% do peso de propante injetado, no poço 10, a um máximo de 92%, no poço 2.

A formação é de arenito (porosidade entre 8% a 20% e permeabilidade entre 50mD a 150mD) com espessura média de 15m na zona produtora. O fraturamento hidráulico foi executado na profundidade de 810m (temperatura entre 120°F a 130°F) e o tratamento foi realizado com bauxita, utilizando-se tanto da técnica convencional quanto da TSO (*tip screenout*). A vazão de injeção foi de 20bpd, com concentração do propante no fluido de fraturamento entre 2lb/gal a 10lb/gal, correspondendo a uma concentração por área tratada da fratura entre 1,28 lb/ft² a 4,30 lb/ft².

A tabela 5.1 fornece detalhes sobre as condições de campo nos poços onde foi constatada a produção de propante, enquanto que a tabela 5.2 lista informações relativas aos poços onde este fenômeno não foi observado.

Para efeito das análises seguintes, o propante considerado foi a bauxita (densidade 3,56, resistência máxima ao esmagamento de 16.000 psi) nos tamanhos comerciais correspondentes às malhas 12/20 (diâmetro médio de 1291 μ), 16/30 (956 μ) e 30/60 (430 μ). A porcentagem de finos gerados por esmagamento está sumarizada na tabela 5.3.

Propante Produzido, (%)

Figura 5.1 – Porcentagem do propante produzido em relação ao peso total injetado nos poços da Petrobrás em Sergipe.

5.2. PROPRIEDADES DO FLUIDO

O conhecimento das seguintes propriedades do fluido (óleo) é necessário para aplicação dos modelos descritos no capítulo 4 desta dissertação para retroanálise do comportamento dos poços da Petrobrás em relação à produção de propante.

5.2.1 Densidade

Duas medidas de densidade podem ser utilizadas na caracterização de petróleo. A densidade definida como a razão, em determinada temperatura, entre a massa específica do óleo e a massa específica da água, como usualmente empregado na Física e na Engenharia, ou a densidade API (American Petroleum Institute) que atribui o valor 10 para a água pura.

восо	FLUXO DE PROPANTE			Kind	DODOS (%)	H(m)	ISID(nei)	Do (nei)	TOE		VAZÃO	DDODANTE	CONC. PROP.	CONC. PROP.	TOTAL	PRESSÃO DE	VAZÃO DE
FUÇU	VOLUME(GAL)	LITOLOGIA	FROF.(IW)	ri (inu)	FORO3.(70)	()	ioir (hei)	re (psi)	1(1)	TIFU INAL.	(bpm)	FROFAMIL	(lb/gal)	(lb/ft²)	PROP.(lb)	FLUXO (psi)	PRODUÇÃO (m ³ /d)
1	417.19	ARENITO	840.00	50	8.00%	15.10	1217	560	124	CONV.	20	BAUXITA	2 - 10	1.20	30,000	400	40
2	1614.56	ARENITO	830.00	100	20.00%	17.00	972	711	120	CONV.	20	BAUXITA	2 - 10	1.44	35,000	100	50
3	530.96	ARENITO	860.00	100	12.00%	12.89	935	721	120	TSO	20	BAUXITA	2 - 10	4.74	78,200	150	90
4	1354.50	ARENITO	800.00	100	13.00%	25.00	1260	1030	120	TSO	20	BAUXITA	2 - 10	3.11	52,800	400	100
5	1061.93	ARENITO	840.00	150	17.00%	12.00	1866	1052	120	TSO	20	BAUXITA	2 - 10	4.39	43,700	700	100
6	287.15	ARENITO	770.00	100	18.00%	10.00	989	1050	120	CONV.	20	BAUXITA	2 - 10	4.82	74,000	700	100
7	476.78	ARENITO	800.00	150	15.00%	6.00	1084	836	120	TSO	20	BAUXITA	2-8	2.76	46,400	370	100
8	102.94	ARENITO	820.00	150	14.00%	20.00	1178	685	120	TSO	15.5	BAUXITA	2-8	2.39	50,400	600	112
9	254.65	ARENITO	780.00	100	20.00%	13.50	1054	360	120	CONV.	20	BAUXITA	2 - 10	2.90	60,300	200	100
10	43.34	CALCAREO	825.00	30	15.00%	15.00	830	810	130	CONV.	15	BAUXITA	2 - 10	3.14	59,900	100	10
11	108.36	ARENITO	745.00	100	13.00%	15.00	1144	526	120	TSO	20	BAUXITA	2 - 10	2.68	53,500	350	80

Tabela 5.1 – Poços onde a produção de propante foi observada.

Tabela 5.2 – Poços onde a produção de propante não foi observada.

POCO	FLUXO DE PROPANTE			Kindi	DOBOS (%)	H(m)	ISID(nei)	Do (nei)	T (%E)		VAZÃO	DDODANTE	CONC. PROP.	CONC. PROP.	TOTAL	PRESSÃO DE	VAZÃO DE
FUÇU	VOLUME(GAL)	LITOLOGIA	EKOF.(W)	K (IIIU)	FORO3.(70)	()	ioir (hei)	re (psi)	1.0	TIFU TIVAL	(bpm)	FROFAMIL	(lb/gal)	(lb/ft²)	PROP.(lb)	FLUXO (psi)	PRODUÇÃO (m³/d)
12	0.00	CALCAREO	560.00	30	1500.00%	8.00	870	568	90	TSO	20	BAUXITA	2 - 10	3.90	38,000	100	35
13	0.00	ARENITO	780.00	50	1400.00%	8.00	1227	430	120	TSO	20	BAUXITA	2-8	4.37	30,400	450	60
14	0.00	ARENITO	760.00	226	1700.00%	8.31	821	569	124	CONV.	21	BAUXITA	2 - 10	2.56	30,500	400	35
15	0.00	ARENITO	700.00	100	1600.00%	12.00	935	600	120	TSO	20	BAUXITA	2 - 10	4.58	41,400	500	50
16	0.00	ARENITO	790.00	50	1800.00%	25.00	653	782	120	TSO	20	BAUXITA	2 -10	4.86	107,400	100	75
17	0.00	ARENITO	800.00	26	1100.00%	21.65	1896	540	120	TSO	20	BAUXITA	2-8	2.45	87,600	500	60
18	0.00	ARENITO	730.00	150	1500.00%	12.00	895	583	120	TSO	20	BAUXITA	2-8	3.80	54,400	100	100
19	0.00	ARENITO	730.00	50	1500.00%	17.00	1093	469	120	TSO	20	BAUXITA	2-8	3.63	87,800	400	70
20	0.00	ARENITO	700.00	961	1800.00%	20.00	946	476	120	TSO	20	BAUXITA	2-8	3.59	117,500	150	80
21	0.00	ARENITO	760.00	30	1400.00%	27.00	895	500	115	TSO	20	BAUXITA	2 -8	2.15	140,500	480	100
22	0.00	ARENITO	670.00	30	1200.00%	17.00	797	555	112	TSO	20	BAUXITA	2 - 10	4.00	132,000	300	50

Notação	Pe (psi). Pressão estática
PROF (m). Profundidade	T(°F): Temperatura °F
ISIP (psi): Alívio instantâneo de pressão	K (md): Permeabilidade do reservatório
Conc. Prop (lb/gal): Concentração de propante	TIPO TRAT: Tipo de tratamento na estimulação
Conc. Prop (lb/ft ²): Concentração do propante na fratura.	POROS (%): Porosidade do reservatório.

Malha	12/18	16/20	16/30	20/40	30/60
10.000 psi	9,3	5,3	2	0,7	0,6
12.500 psi	13	7,7	3,8	1,4	1,3
15.000 psi	-	13,8	6,0	2,7	2,3

Tabela 5.3 – Porcentagem de finos em propante de bauxita.

Os valores da densidade δ_0 em função da densidade API podem ser aproximadamente estimados, na temperatura 15°C (60°F), pela correlação (5.1). Nesta dissertação foi considerado óleo API 32 com valor da densidade $\delta_0 = 0,865$ ou massa específica $\rho_0 = 865 \text{ kg/cm}^3$.

$$\delta_o = \frac{141,5}{131,5 + API} \tag{5.1}$$

Óleos de baixa densidade apresentam alta densidade API (óleos leves com API superior a 30; óleos pesados com API inferiores a 20) e o preço é usualmente baseado na densidade API, atingindo maiores valores para óleos leves.

A conversão entre densidade e densidade API, bem como a variação destas propriedades em relação à temperatura, pode ser feita através de tabelas (ASTM 1250 - *Petroleum Measurement Tables*) aprovadas pelo *American Petroleum Institute*, dos Estados Unidos, e *Institute of Petroleum*, do Reino Unido.

5.2.2. Viscosidade

Uma das mais importantes propriedades do óleo, tanto para aplicações de engenharia quanto de geofísica, é a sua viscosidade. Ainda que a mesma seja influenciada pela pressão e teor de gás, a viscosidade pode ser considerada uma função primária da densidade do óleo e da temperatura. Beggs e Robinson (1975) desenvolveram uma das correlações típicas, expressa pelas equações (5.2) e (5.3).

$$Z = 3,0324 - 0,02023(^{\circ}API)$$
(5.2a)

$$Y = 10^{\mathbb{Z}} \tag{5.2b}$$

$$X = Y(T^{-1,163}) \tag{5.2c}$$

$$\mu = 10^x - 1 \tag{5.2d}$$

onde T é a temperatura em graus Farenheit e a viscosidade é obtida em centipoises (cp).

$$\log_{10}(\mu+1) = 0.505Y(17.8+T)^{-1.163}$$
(5.3a)

$$\log_{10}(Y) = 0,5693 - 2,863/\delta_0 \tag{5.3b}$$

onde T é a temperatura em graus Celsius e a viscosidade é obtida em centipoises (cp).

Nesta dissertação a viscosidade do óleo foi considerada $\mu = 20$ cp.

5.3. CARACTERÍSTICAS DE PROJETO DO FRATURAMENTO HIDRÀULICO

As dimensões da fratura podem ser calculadas com base em um projeto de fraturamento hidráulico, seguindo-se o procedimento abaixo (Canon et. al, 2003):

a) Volume do reservatório circular de raio r_e e altura h_p :

$$V_{res} = \pi r_e^2 h_p \tag{5.4}$$

b) Volume V_i do propante injetado (ft³):

$$Vi = \frac{(M_p/2)}{62.43(1-\phi_{pp})SG_p}$$
(5.5)

onde M_p é a massa do propante (lbs), SG_p a densidade do propante e ϕ_{pp} a porosidade do pacote granular.

c) Volume do propante depositado na fratura V_{fp} (ft³):

Determinado considerando-se a razão entre a altura h_p do reservatório (*net pay heigth*) e a altura h_f da fratura:

$$V_{fp} = V_i \frac{h_p}{h_f}$$
(5.6)

d) Razão de penetração I_x

Este coeficiente indica o desempenho de um poço vertical que intercepta uma fratura retangular vertical que se estende por todo o reservatório.

$$I_x = \frac{2x_f}{x_e} \tag{5.7}$$

onde x_f é o comprimento de cada asa da fratura e x_e representa o comprimento equivalente da região estudada na direção de propagação da fratura, de acordo com a Figura 5.2 e equação (5.8):

Figura 5.2 - Representações esquemáticas do reservatório e da fratura, (Diego J. Romero, e Peter P. Valkó, 2003)

$$A = r_e^2 \pi = x_e^2 \tag{5.8}$$

e) Coeficiente adimensional de condutividade da fratura C_{fd}

$$C_{fd} = \frac{k_f (W/12)}{k x_f}$$
(5.9)

onde *W* é a largura média da fratura, k_f a permeabilidade da fratura, *k* a permeabilidade da formação e x_f o comprimento de cada asa da fratura.

f) Número de propante N_p:

Foi também proposta (Romero, Valkó e Economides, 2002) a definição do número de propante N_p, relacionado com o coeficiente adimensional de condutividade da fratura C_{fd} e razão de penetração I_x , conforme equações (5.10) e (5.11). No caso de $N_p < 0,1$ o valor máximo do coeficiente adimensional de condutividade da fratura C_{fd} é limitado em 1,6.

$$N_p = \frac{4V_{fd}k_f}{kV_{rez}} \tag{5.10}$$

$$N_{p} = I_{x}^{2} C_{fD} (5.11)$$

g) Após a determinação do valor ótimo¹ do coeficiente de condutividade da fratura C_{fd} o comprimento de cada asa da fratura x_f pode ser calculado como

$$x_f = \left[\frac{V_{fp}k_f}{C_{fd}h_pk}\right]^{1/2}$$
(5.12)

e a largura do pacote de propante W_p pode ser estimada através da seguinte relação:

$$W_{p} = 12 \left[\frac{C_{fd} V_{fp} k}{h_{p} k_{f}} \right]^{1/2} = \frac{V_{f}}{x_{f} h_{p}}$$
(5.13)

onde V_{fp} é expresso em ft³, h_p em ft, $k \in k_f$ em md, x_f em ft e W_p em polegadas.

Outras duas variáveis úteis na análise da estabilidade do propante são a máxima largura da fratura, junto ao poço, e a largura média da fratura, calculadas de acordo com o modelo da cunha livre como:

$$W_{p,avg} = 12 \frac{V_i}{x_f h_f} \tag{5.14}$$

$$W_{p,\max} = 1,592W_{p,avg}$$
 (5.15)

onde as larguras ao expressas em polegadas, V_i em ft³, x_f e h_f em pés.

h) Finalmente, o índice de produtividade do poço J_D , definido pela equação (5.16)

$$J_{D} = \frac{1}{\ln \frac{0.472r_{e}}{x_{f}} + f(C_{fD})}$$
(5.16)

¹ O valor ótimo do coeficiente adimensional de condutividade da fratura pode ser determinado graficamente com base nas figuras 5.4 e 5.5 ou, alternativamente, através do critério de Cinco-Ley e Samaniego (1977).

pode ser estimado dos gráficos da figura 5.3, em termos da representação tradicional de J_D como função de C_{fD} e I_x , ou alternativamente em termos do número de propante N_P nos gráficos das figuras 5.4 e 5.5.

Figura 5.3 – Índice adimensional de produtividade J_D em função do coeficiente adimensional de condutividade da fratura C_{fD} e da razão de penetração I_x .

Figura 5.4 - Índice adimensional da produtividade em função do coeficiente adimensional de condutividade da fratura e do número de propante para $N_P \leq 0.1$, (Cinco-Ley, H. and Samaniego, 1977).

Figura 5.5 - Índice adimensional da produtividade em função do coeficiente adimensional de condutividade da fratura com número de propante N_P > 0.1, (Cinco-Ley, H. and Samaniego,1977)

5.4. MODELOS UTILIZADOS NAS RETROANÁLISES

Os estudos de retroanálise da estabilidade do pacote granular nos 22 poços da Petrobrás em Sergipe foi procedida usando-se os seguintes modelos: correlação do consórcio Stimlab, modelo de cunha livre, modelo semi-mecânico e modelo de potência. Estes modelos foram descritos detalhadamente no capítulo 4 e aqui apenas as suas características principais são relembradas para facilitar a aplicação.

Para o modelo do consórcio Stimlab, a velocidade de Darcy pode ser estimada a partir dos valores da vazão de campo, pressão no fundo do poço e área da fratura através da seguinte equação:

$$V = \frac{Q_{total}}{86.400 \left(\frac{W_p}{12}h_p\right)}$$
(5.17)

onde a vazão Q_{total} é fornecida em pés³ /dia, a largura W_p em polegadas, a altura do reservatório h_p em pés e a velocidade de Darcy V em pés/segundo.

Em seguida, a velocidade de Darcy é comparada com a velocidade crítica calculada de acordo com as equações (4.1) a (4.4). Caso V resulte superior, conclui-se que pelo modelo do consórcio Stimlab o refluxo do material de sustentação pode acontecer.

Para o modelo da cunha livre, os valores do termo de arraste F (equação 4.5a) e do termo de fechamento da fratura C (equação 4.6a), que compõem os eixos da figura 4.2, devem ser determinados.

O gradiente de pressão dP/dx, expresso em unidades psi/ft, pode ser estimado da lei de Darcy como

$$\frac{dP}{dx} = 2,31 \left[\frac{Q_{total} \mu}{0,00633k_f \left(\frac{W_p}{12} h_p \right)} \right]$$
(5.18)

٦

e em seguida convertido no termo de arraste através da equação (4.5a).

Г

Por sua vez, o termo de fechamento da fratura C depende da tensão final de fechamento $P_{c,net}$ definida como

$$P_{c,net} = P_{c,bh} - P_{bh} \tag{5.19}$$

i.e, a diferença entre a tensão total de fechamento no fundo do poço $P_{c,bh}$ e a pressão do fluido no fundo do poço P_{bh} .

Finalmente, a equação (4.7) é utilizada para cálculo da largura normalizada estável máxima $W_{r,max}$ da fratura. Se o valor real da largura normalizada da fratura exceder $W_{r,Max}$, então pelo modelo da cunha livre o pacote granular pode ser considerado instável.

Para o modelo semi-mecânico os termos de largura da fratura W_T (equação 4.17a) e da resistência do propante S_T (equação 4.17b) devem ser estimados. Em seguida, o gradiente de pressão mínimo para fluidificação F_{FV} (equação 4.18) é determinado em função da velocidade mínima de fluidificação v_f (equações 4.11a, 4.11b e 4.11c) baseada na equação de Ergun.

O valor do máximo gradiente de pressão estável F_{sta} é então calculado pela equação (4.16), sendo comparado com o gradiente de pressão real na fratura (equação 5.18). Caso este seja inferior a F_{sta} então a fratura é admitida estável; caso contrário, instável.

Para o modelo de potência, os valores das variáveis que aparecem nos eixos das figuras 4.6 ou 4.7 devem ser determinados, isto é, o número de Reynolds R_f para as condições reais de fluxo e a razão d/W real (diâmetro do propante d normalizado em relação à largura da fratura W). Caso o valor real de d/W seja superior ao valor crítico do diâmetro normalizado, mostrado na curvas das figuras 4.6 ou 4.7, então o pacote granular é considerado instável pelo modelo de potência.

5.5. RESULTADOS OBTIDOS

A altura da fratura h_f pode ser determinada com base na equação (5.6). Entretanto, a aplicação desta equação no caso do poço 2 resultou num valor excessivamente alto (da ordem de 700 pés); para este poço, considerou-se então um valor de altura da fratura igual a 1,35 vezes a altura da região produtora h_p .

Dois tipos de gráficos estão sendo apresentados para análise das condições de produção de propante nos poços da Petrobrás. O primeiro tipo, correspondentes às Figuras 5.6 a 5.13, consiste na representação de regiões de estabilidade delimitadas por curvas de largura normalizada da fratura. Os círculos referem-se aos poços onde houve produção de propante e os losangos aos poços onde tal fenômeno não ocorreu. Os círculos foram desenhados com tamanho proporcional à porcentagem de propante produzido em relação ao peso total injetado na fratura, com a mesma cor da correspondente curva de largura normalizada. A legenda localizada à direita das figuras traz informações sobre a porcentagem de propante produzido, o número do poço e a largura normalizada da fratura em relação ao diâmetro do propante.

O segundo tipo de gráfico (Figuras 5.15 a 5.19) apresenta basicamente as mesmas informações, mas com interpretação mais fácil e direta. A linha poligonal representa a porcentagem de propante produzido, em relação ao peso do propante total injetado, referenciada à escala vertical direita do gráfico. As barras verticais indicam a condição de instabilidade, cuja definição depende do modelo de previsão considerado: no modelo de cunha livre é a razão entre a largura normalizada real da fratura e a largura

normalizada estável máxima; no modelo do consórcio Stimlab e no modelo semimecânico corresponde à razão entre a velocidade real e a velocidade crítica, enquanto que no modelo de potência indica a razão entre o diâmetro normalizado d/W real do propante e o diâmetro normalizado crítico para determinado número de Reynolds.

A linha tracejada horizontal denota o limite superior de estabilidade; um valor maior do que 1, referenciado à escala vertical à esquerda do gráfico, indica portanto que o pacote granular se acha em condição instável.

Figura 5.6 – Retroanálise para o modelo de cunha livre considerando propante (bauxita) de diâmetro 30/60.

Figura 5.7 – Retroanálise para o modelo semi-mecânico considerando propante (bauxita) de diâmetro 16/30. nos poços onde houve produção de propante.

Figura 5.8 – Retroanálise para o modelo semi-mecânico considerando propante (bauxita) de diâmetro 12/20 nos poços onde houve produção de propante.

Figura 5.9– Retroanálise para o modelo semi-mecânico considerando propante (bauxita) de diâmetro 16/30 nos poços onde não houve produção de propante (losangos).

Correlação Stimlab 16/30

Figura 5.10 – Retroanálise para o modelo do consórcio Stimlab considerando propante (bauxita) de diâmetro 16/30. Os losangos se referem a poços onde não ocorreu produção do material de sustentação da fratura.

Figura 5.11 – Retroanálise para o modelo do consórcio Stimlab considerando propante (bauxita) de diâmetro 12/20. Os losangos se referem a poços onde não ocorreu produção do material de sustentação da fratura.

Figura 5.12 – Retroanálise para o modelo de potência considerando propante (bauxita) de diâmetro 16/30. Os losangos se referem a poços onde não ocorreu produção do material de sustentação da fratura.

Figura 5.13 – Retroanálise para o modelo de potência considerando propante (bauxita) de diâmetro 12/20. Os losangos se referem a poços onde não ocorreu produção do material de sustentação da fratura.

Figura 5.14 – Condição de estabilidade do propante (bauxita 30/60) de acordo com o modelo da cunha livre nos poços onde houve refluxo do material de sustentação.

Figura 5.15 – Condição de estabilidade do propante (bauxita 30/60) de acordo com o modelo da cunha livre nos poços onde não houve refluxo do material de sustentação.

Figura 5.16 – Condição de estabilidade do propante (bauxita 16/30 e 12/20) de acordo com o modelo semi-mecânico nos poços onde houve refluxo do material de sustentação.

Figura 5.17 – Condição de estabilidade do propante (bauxita 16/30 e 12/20) de acordo com o modelo semi-mecânico nos poços onde não houve refluxo do material de sustentação.

Figura 5.18 – Condição de estabilidade do propante (bauxita 16/30 e 12/20) de acordo com o modelo do consórcio Stimlab nos poços onde houve refluxo do material de sustentação.

Figura 5.19 – Condição de estabilidade do propante (bauxita 16/30 e 12/20) de acordo com o modelo do consórcio Stimlab nos poços onde não houve refluxo do material de sustentação.

Da observação dos resultados na figura 5.6 as seguintes conclusões podem ser retiradas quanto ao desempenho do modelo de cunha livre:

- a) Para o modelo de cunha livre os pontos que representam a produção de propante em campo não se situam na "região de desestabilização mecânica" (Andrés e Kjorholt, 1998) onde o mecanismo responsável pela instabilidade do pacote granular é prioritariamente decorrente do esmagamento parcial dos grãos, sendo pouco relevantes as condições reais de fluxo.
- b) Pode ser argumentado que o modelo de cunha livre foi originalmente proposto para propantes de areia, e logo não seria aplicável para casos de material de sustentação de maior resistência ao esmagamento. Acreditase, no entanto, que o modelo reflete as causas do refluxo do material de sustentação nos poços analisados. O uso de propante de maior resistência não alteraria o comportamento do pacote granular, movendo, no entanto, a "região de desestabilização mecânica" mais para a direita no gráfico do modelo.
- c) Na Figura. 5.6 as fraturas, com exceção no poço 2, apresentaram larguras normalizadas em relação ao diâmetro superiores a 8, confirmando os resultados experimentais de Milton-Tayler et al. (1992) que fraturas com larguras normalizadas superiores a 6 são inerentemente instáveis.
- d) Em termos práticos, o modelo de cunha livre não é muito recomendado para aplicações de engenharia, tanto pela dificuldade da estimativa dos parâmetros do modelo com base nas informações de campo, quanto pelo aspecto teórico já discutido no capítulo 4, porque pela forma das curvas para 6 ou mais camadas observa-se (Figura 4.2) que determinada fratura pode ser instável sob um valor baixo da força de arraste e tornar-se estável sob um valor alto desta mesma força, considerando-se o termo de fechamento *C* constante.

Quanto ao modelo semi-mecânico as seguintes observações podem também ser feitas:

a) Os casos de refluxo do material de sustentação se situam na zona central das Figuras 5.7 e 5.8, onde tensões de fechamento relativamente baixas predominam, o que elimina a possibilidade de esmagamento parcial das partículas de propante. A instabilidade do pacote granular deve-se, portanto aos efeitos das forças de arraste que, nesta zona central, atingem suas maiores intensidades.

- b) Os resultados das Figuras 5.7 à 5.9, com exceção do comportamento inesperado no poço 2, reforçam novamente a primeira observação empírica documentada por Milton-Tayler et al. (1992) que o fenômeno do refluxo do material de sustentação torna-se um problema severo para fraturas com largura normalizada superior a 6.
- c) Das figuras 5.16 e 5.17, as barras dos níveis de instabilidade apresentam, de maneira geral, a mesma tendência de variação da poligonal que indica a produção real de propante em campo (com exceções nos poços 2, novamente, 4 e 5).

Com relação aos resultados obtidos nas retroanálises com o modelo do consórcio Stimlab, as seguintes conclusões podem ser extraídas das Figuras 5.10, 5.11 e Figuras 5.18. 5.19:

- a) das curvas das Figuras 5.10 e 5.11 observa-se que a estabilidade do pacote granular aumenta indefinidamente com o aumento da tensão de fechamento da fratura. O modelo, como já mencionado no capítulo 4, não considera adequadamente os efeitos da tensão de fechamento (possibilidade de esmagamento de grãos) não sendo recomendada a sua aplicação para tensões de fechamento superiores a 7.000 psi (48 MPa).
- b) Não obstante esta restrição, as retroanálises executadas com o modelo Stimlab podem ser consideradas as mais satisfatórias obtidas neste estudo.

Finalmente, quanto ao modelo de potência (Figuras 5.12 e 5.13) observa-se que seus resultados foram excessivamente conservativos, prevendo refluxo do material de sustentação na grande maioria dos 22 poços analisados. Como o modelo não considera a influência da tensão de fechamento, que contribui significativamente com a estabilidade do pacote granular, não se recomenda a utilização do modelo de potência nas aplicações práticas.

De maneira geral, não se pode estabelecer com total confiança o melhor modelo para previsão do refluxo do material de sustentação, devido ao nível de incerteza em relação aos valores de algumas variáveis do modelo, principalmente em relação às dimensões da fratura. De maneira geral, recomenda-se, entretanto, a aplicação dos modelos do consórcio Stimlab e do modelo sem-mecânico, ressalvadas as objeções teóricas mencionadas anteriormente no capítulo 4.

5.6. ANÁLISE COMPARATIVA DOS RESULTADOS

As tabelas seguintes mostram os valores numéricos obtidos nas diversas retroanálises executadas com os poços da Petrobrás, permitindo uma análise comparativa entre os diversos métodos de previsão utilizados.

Tabela 5.4 – Parâmetros da fratura e resultados obtidos com o modelo de cunha livre (bauxita 30/60).

POÇOS QUE PRODUZIRAM BAUXITA															
Poço	Q (scf/D)	µ(ср)	Wp (in)	hp (ft)	Kł(mD)	Gra. Pre. (Psi/ft)	dref(in)	dp (in)	F (Psi)	C (Psi)	1/C	Wr	Wr,max	Wr/Wr,max	Condição
n°															
1	1.412,79	20,00	0,184	49,541	500.000	27,18	0,0284	0,017	5,83	880,43	0,0011	10,81	6,56	1,65	Fratura Instável
2	1.765,99	20,00	0,087	55,774	500.000	63,68	0,0284	0,017	13,66	787,35	0,0013	5,12	1,37	3,73	Fratura Instável
3	3.178,79	20,00	0,258	42,290	500.000	51,06	0,0284	0,017	10,95	789,96	0,0013	15,17	3,19	4,75	Fratura Instável
4	3.531,98	20,00	0,220	82,021	500.000	34,29	0,0284	0,017	7,35	874,68	0,0011	12,94	5,88	2,20	Fratura Instável
5	3.531,98	20,00	0,242	39,370	500.000	64,85	0,0284	0,017	13,91	1112,97	0,0009	14,26	4,75	3,00	Fratura Instável
6	3.531,98	20,00	0,266	32,808	500.000	70,97	0,0284	0,017	15,22	761,70	0,0013	15,63	-0,32	-49,38	Fratura Estavel
7	3.531,98	20,00	0,270	19,685	500.000	116,48	0,0284	0,017	24,98	811,61	0,0012	15,87	-6,21	-2,56	Fratura Estavel
8	3.955,82	20,00	0,232	65,617	500.000	45,48	0,0284	0,017	9,76	855,87	0,0012	13,66	4,61	2,96	Fratura Instável
9	3.531,98	20,00	0,250	44,291	500.000	55,95	0,0284	0,017	12,00	790,28	0,0013	14,69	2,52	5,82	Fratura Instável
10	353,20	20,00	0,226	49,213	500.000	5,57	0,0284	0,017	1,19	733,83	0,0014	13,29	8,96	1,48	Fratura Instável
11	2.825,59	20,00	0,227	49,213	500.000	44,34	0,0284	0,017	9,51	804,02	0,0012	13,34	4,25	3,14	Fratura Instável
POÇOS QUE N/	ão produ	ZIRAM I	BAUXITA										3,23		
Роçо	Q (scf/D)	<i>µ</i> (ср)	Wp (in)	hp (ft)	Kt(mD)	Gra. Pre. (Psi/ft)	dref(in)	dp (in)	F (Psi)	C (Psi)	1/C	Wr	Wr,max	Wr/Wr,max	Condição
7-CP-0370-SE	1236,19	20,00	0,102	26,25	500.000	81,20	0,0284	0,017	17,42	607,97	0,002	5,98	-8,90	-0,67	Fratura Estavel
7-CP-1350-SE	2119,19	20,00	0,094	26,25	500.000	149,94	0,0284	0,017	32,16	852,27	0,001	5,55	-10,35	-0,54	Fratura Estavel
7-CP-1322-SE	1236,19	20,00	0,096	27,26	500.000	82,97	0,0284	0,017	17,79	696,22	0,001	5,63	-4,67	-1,21	Fratura Estavel

λ											·····	·····		Å	
Fratura Estavel	-1,21	-4,67	5,63	0,001	696,22	17,79	0,017	0,0284	82,97	500.000	27,26	0,096	20,00	1236,19	7-CP-1322-SE
Fratura Estavel	-1,43	-3,97	5,68	0,001	705,32	17,45	0,017	0,0284	81,35	500.000	39,37	0,097	20,00	1765,99	7-CP-1392-SE
Fratura Estavel	-2,71	-1,99	5,38	0,002	651,89	13,26	0,017	0,0284	61,84	500.000	82,02	0,091	20,00	2648,99	7-CP-1414-SE
Fratura Instável	1,04	5,25	5,46	0,001	1102,56	12,07	0,017	0,0284	56,28	500.000	71,03	0,093	20,00	2119,19	7-CP-1300-SE
Fratura Estavel	-0,26	-21,98	5,68	0,001	706,86	34,93	0,017	0,0284	162,88	500.000	39,37	0,096	20,00	3531,98	7-CP-1488-SE
Fratura Estavel	-110,14	-0,06	6,36	0,001	777,81	15,41	0,017	0,0284	71,86	500.000	55,77	0,108	20,00	2472,39	7-CP-1145-SE
Fratura Instável	223,29	0,03	7,29	0,001	709,27	13,05	0,017	0,0284	60,83	500.000	65,62	0,124	20,00	2825,59	7-CP-0079-SE
Fratura Instáve	114,25	0,06	6,55	0,001	722,73	13,45	0,017	0,0284	62,71	500.000	88,58	0,111	20,00	3531,98	7-CP-1311-SE
Fratura Instáve	2,60	3,71	9.65	0.002	640,01	7.25	0.017	0.0284	33.82	500.000	55,77	0.164	20.00	1765.99	7-CP-0037-SE

Tabela 5.5 - Parâmetros da fratura e resultados obtidos com o modelo semi-mecânico (bauxita 16/30)

Dados	da Baı	ıxita 16/30
SGp	3,56	
dp	0,038	in
ρp	128,00	lb/ft3
ρı	54,00	lb/ft3

POÇOS QUE PRODUZIRAM BAUXITA

0,9

0,9

0,4 0,0023 0,4 0,0023

1,27

10

11

Poço	∳ s	Enf	∨r (ft/s)	Frv (Psi/ft)	Resis Nom Bauxita (Psi)	St	Wr	Wt	Fmax (Psi/ft)	Freal / Fmax	Condição
1	0,9	0,4	0,0023	1,27	16000	0,704	4,84	8,94	10,14	2,68	Fratura Instável
2	0,9	0,4	0,0023	1,27	16000	0,704	2,29	128,72	129,92	0,49	Fratura Estavel
3	0,9	0,4	0,0023	1,27	16000	0,704	6,79	1,16	2,43	10,52	Fratura Instável
4	0,9	0,4	0,0023	1,27	16000	0,704	5,79	3,29	4,54	7,55	Fratura Instável
5	0,9	0,4	0,0023	1,27	16000	0,704	6,38	1,78	2,87	15,07	Fratura Instável
6	0,9	0,4	0,0023	1,27	16000	0,704	6,99	0,93	2,20	14,34	Fratura Instável
7	0,9	0,4	0,0023	1,27	16000	0,704	7,10	0,83	2,10	22,16	Fratura Instável
8	0,9	0,4	0,0023	1,27	16000	0,704	6,11	2,35	3,61	6,99	Fratura Instável
9	0,9	0,4	0,0023	1,27	16000	0,704	6,57	1,45	2,72	11,42	Fratura Instável
					•				• · · · · · ·		

0,704 0,704

5,94 5,97

2,80

4,04

4,00 6,16

1,15

Fratura Instável Fratura Instável

Poços que não produziram bauxita (100% do peso total de propante injetado)

16000

16000

POÇOS QUE NÃO PRODUZIRAM DAUXITA											
Poço	∳ s	Enf	∨r (ft/s)	FF¥ (Psi/ft)	Resis Nom Bauxita (Psi)	St	Wr	Wt	Fmax (Psi/ft)	Freal / Fmax	Condição
7-CP-0370-SE	0,9	0,4	0,0023	1,271	16000	0,704	4,78	9,45	10,000	4,54	Fratura Instável
7-CP-1350-SE	0,9	0,4	0,0023	1,271	16000	0,704	5,20	6,08	7,332	9,75	Fratura Instável
7-CP-1322-SE	0,9	0,4	0,0023	1,271	16000	0,704	4,93	8,11	9,209	4,60	Fratura Instável
7-CP-1392-SE	0,9	0,4	0,0023	1,271	16000	0,704	5,33	5,33	6,512	5,96	Fratura Instável
7-CP-1414-SE	0,9	0,4	0,0023	1,271	16000	0,704	5,38	5,04	6,086	4,54	Fratura Instável
7-CP-1300-SE	0,9	0,4	0,0023	1,271	16000	0,704	5,12	6,62	7,259	3,70	Fratura Instável
7-CP-1488-SE	0,9	0,4	0,0023	1,271	16000	0,704	4,97	7,79	8,927	9,33	Fratura Instável
7-CP-1145-SE	0,9	0,4	0,0023	1,271	16000	0,704	5,03	7,27	8,528	4,76	Fratura Instável
7-CP-0079-SE	0,9	0,4	0,0023	1,271	16000	0,704	5,36	5,17	6,359	5,83	Fratura Instável
7-CP-1311-SE	0,9	0,4	0,0023	1,271	16000	0,704	5,29	5,55	6,756	5,14	Fratura Instável
7-CP-0037-SE	0,9	0,4	0,0023	1,271	16000	0,704	6,73	1,23	2,439	8,90	Fratura Instável

POCOS QUE NÃO PRODUZIRAM BAUXITA

Pocos que não produziram bauxita (80% do peso total de propante inj	etado)
---	-------	---

Poço	¢s	E mf	∀r (ft/s)	FF¥ (Psi/ft)	Resis Nom Bauxita (Psi)	St	Wr	Wt	Fmax (Psi/ft)	Freal / Fmax	Condição
7-CP-0370-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.67	86.25	80.927	1.00	Fratura Instável
7-CP-1350-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.48	105.43	106.354	1.41	Fratura Instável
7-CP-1322-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.52	101.42	100.552	0.83	Fratura Estavel
7-CP-1392-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.54	99.04	98.577	0.83	Fratura Estavel
7-CP-1414-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.41	114.02	110.281	0.56	Fratura Estavel
7-CP-1300-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.44	109.76	100.594	0.56	Fratura Estavel
7-CP-1488-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.54	99.34	98.929	1.65	Fratura Instável
7-CP-1145-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.84	72.19	73.370	0.98	Fratura Estavel
7-CP-0079-SE	0.9	0.4	0.0023	1.271	16000	0.704	3.26	46.51	47.031	1.29	Fratura Instável
7-CP-1311-SE	0.9	0.4	0.0023	1.271	16000	0.704	2.93	65.87	66.371	0.94	Fratura Estavel
7-CP-0037-SE	0.9	0.4	0.0023	1.271	16000	0.704	4.32	15.43	15.904	2.13	Fratura Instável

Dados	da Bau	ixita 12/20
SGp	3,56	
dp	0,041	in
ρ _P	128,00	lb/ft3
p1	54,00	lb/ft3

POÇOS QUE PRODUZIRAM BAUXITA

Poço	∳ s	Enf	∀r (ft/s)	Frv (Psi/ft)	Resis Nom Bauxita (Psi)	St	Wr	Wt	Frnax (Psi/ft)	Freal / Fmax	Condição
1	0,9	0,4	0,0027	1,479	16000	0,704	4,48	12,96	14,33	1,90	Fratura Instável
2	0,9	0,4	0,0027	1,479	16000	0,704	2,12	153,46	154,86	0,41	Fratura Estavel
3	0,9	0,4	0,0027	1,479	16000	0,704	6,29	1,95	3,43	7,45	Fratura Instável
4	0,9	0,4	0,0027	1,479	16000	0,704	5,37	5,13	6,58	5,21	Fratura Instável
5	0,9	0,4	0,0027	1,479	16000	0,704	5,91	2,90	4,09	10,58	Fratura Instável
6	0,9	0,4	0,0027	1,479	16000	0,704	6,48	1,59	3,07	10,28	Fratura Instável
7	0,9	0,4	0,0027	1,479	16000	0,704	6,58	1,43	2,91	15,99	Fratura Instável
8	0,9	0,4	0,0027	1,479	16000	0,704	5,66	3,76	5,22	4,84	Fratura Instável
9	0,9	0,4	0,0027	1,479	16000	0,704	6,09	2,40	3,88	8,01	Fratura Instável
10	0,9	0,4	0,0027	1,479	16000	0,704	5,51	4,41	5,85	0,79	Fratura Estavel
11	0,9	0,4	0,0027	1,479	16000	0,704	5,53	4,31	5,79	4,26	Fratura Instável

Poços que não produziram bauxita (100% do peso total de propante injetado)

POÇOS QUE NÃO PRODUZIRAM BAUXITA

Poço	∳ s	Enf	∀r (ft/s)	Frv (Psi/ft)	Resis Nom Bauxita (Psi)	St	Wr	Wt	Frnax (Psi/ft)	Freal / Fmax	Condição
7.00.0370.9E	nai	0.4	0.0027	1 /70	16000	0.704	1 /3	13.64	14 077	3 00	Eratura Inetávol
7-CP-1350-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,82	9,07	10,514	6,80	Fratura Instável
7-CP-1322-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,57	11,84	13,065	3,25	Fratura Instável
7-CP-1392-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,94	8,03	9,367	4,14	Fratura Instável
7-CP-1414-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,99	7,61	8,757	3,16	Fratura Instável
7-CP-1300-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,75	9,80	10,349	2,59	Fratura Instável
7-CP-1488-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,60	11,40	12,686	6,56	Fratura Instável
7-CP-1145-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,67	10,69	12,157	3,34	Fratura Instável
7-CP-0079-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,97	7,80	9,154	4,05	Fratura Instável
7-CP-1311-SE	0,9	0,4	0,0027	1,479	16000	0,704	4,90	8,33	9,710	3,58	Fratura Instável
7-CP-0037-SE	0.9	0.4	0.0027	1,479	16000	0,704	6.23	2.06	3.436	6.31	Fratura Instável

Poços que não produziram bauxita (80% do peso total de propante injetado)

Poço	¢s	Enf	A	В	C	∀r (ft/s)	FF¥ (Psi/ft)	Resis Nom Bauxita (Psi)	St	Wr	Wt	Frnax (Psi/ft)	Freal / Frnax	Condição
7-CP-0370-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.48	105.89	99.193	0.82	Fratura Estavel
7-CP-1350-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.30	127.54	128.528	1.17	Fratura Instável
7-CP-1322-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.33	123.04	121.850	0.68	Fratura Estavel
7-CP-1392-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.36	120.36	119.660	0.68	Fratura Estavel
7-CP-1414-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.23	137.15	132.525	0.47	Fratura Estavel
7-CP-1300-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.27	132.39	121.206	0.46	Fratura Estavel
7-CP-1488-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.35	120.70	120.061	1.36	Fratura Instável
7-CP-1145-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.64	89.78	91.078	0.79	Fratura Estavel
7-CP-0079-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	3.02	59.73	60.179	1.01	Fratura Instável
7-CP-1311-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	2.72	82.47	82.916	0.76	Fratura Estavel
7-CP-0037-SE	0.9	0.4	7653.3	27554.535	-70.9431	0.0026	1.405	16000	0.704	4.00	21.49	21.780	1.55	Fratura Instável

Tabela 5.7 – Parâmetros da fratura e resultados obtidos com o modelo do consórcio Stimlab (bauxita 16/30).

Dados do Prop	oant 16/30	
SGp	3,56	
dp	0,038	in

Ρυζι	JS QUE PR	ODUZIKAN	I DAUXII.	A						
Poço	Cp (lb/ft2)	<i>µ(ср</i>)	∀r (ft/s)	∀r,s (ft/s)	Pc,net, (Psi)	Wr	∨c (ft/s)	∀c (ft/s)	Vr / Vc	Condição
1	1,20	20,00	0,050	0,022	2457,16	4,84	0,150	0,064	0,335	Fratura Estavel
2	1,44	20,00	0,248	0,050	2197,39	2,29	513,565	104,525	0,000	Fratura Estavel
3	4,74	20,00	0,034	0,020	2204,69	6,79	0,005	0,003	6,966	Fratura Instável
4	3,11	20,00	0,053	0,027	2441,10	5,79	0,022	0,011	2,438	Fratura Instável
5	4,39	20,00	0,061	0,034	3106,16	6,38	0,015	0,008	4,171	Fratura Instável
6	4,82	20,00	0,040	0,025	2125,81	6,99	0,004	0,002	10,132	Fratura Instável
7	2,76	20,00	0,059	0,037	2265,10	7,10	0,006	0,004	9,838	Fratura Instável
8	2,39	20,00	0,037	0,020	2388,63	6,11	0,015	0,008	2,521	Fratura Instável
9	2,90	20,00	0,042	0,025	2205,57	6,57	0,008	0,004	5,501	Fratura Instável
10	3,14	20,00	0,007	0,004	2048,01	5,94	0,012	0,006	0,573	Fratura Estavel
11	2,68	20,00	0,037	0,020	2243,90	5,97	0,015	0,008	2,488	Fratura Instável

Poço	Cp (ft/s)	C _P (lb/ft2)	∀r (ft/s)	∀r,s (ft/s)	Pc,net, (Psi)	Wr	Vc (ft∕s)	Vc,s (ft/s)	Vr / Vc	Condição
7-CP-0370-SE	3,90	20,00	0,050	0,021	1696,77	4,78	0,055	0,023	0,91	Fratura Estavel
7-CP-1350-SE	4,37	20,00	0,076	0,035	2378,57	5,20	0,056	0,026	1,34	Fratura Instável
7-CP-1322-SE	2,56	20,00	0,023	0,010	1943,05	4,93	0,060	0,026	0,38	Fratura Estavel
7-CP-1392-SE	4,58	20,00	0,032	0,015	1968,46	5,33	0,026	0,012	1,22	Fratura Instável
7-CP-1414-SE	4,86	20,00	0,027	0,013	1819,34	5,38	0,019	0,009	1,40	Fratura Instável
7-CP-1300-SE	2,45	20,00	0,035	0,016	3077,10	5,12	0,143	0,065	0,24	Fratura Estavel
7-CP-1488-SE	3,80	20,00	0,049	0,022	1972,76	4,97	0,056	0,025	0,88	Fratura Estavel
7-CP-1145-SE	3,63	20,00	0,036	0,016	2170,76	5,03	0,063	0,028	0,56	Fratura Estavel
7-CP-0079-SE	3,59	20,00	0,008	0,004	1979,46	5,36	0,026	0,013	0,29	Fratura Estavel
7-CP-1311-SE	2,15	20,00	0,036	0,017	2017,05	5,29	0,034	0,016	1,05	Fratura Instável
7-CP-0037-SE	4,00	20,00	0,016	0,010	1786,17	6,73	0,005	0,003	3,59	Fratura Instável

Tabela 5.8 – Parâmetros da fratura e resultados obtidos com o modelo do consórcio Stimlab (bauxita 12/20)

Dados do Propp	ant 12/20	
SGp	3,56	
dp	0,041	in

POÇC	OS QUE PR	ODUZIRAN	A BAUXIT	Α						
Poço	Cp (lb/ft2)	<i>µ</i> (ср)	∀r (ft/s)	∀r,s (ft/s)	Pc,net, (Psi)	Wr	∀c (ft/s)	∀c,s (ft/s)	Vr / Vc	Condição
1	1,20	20,00	0,058	0,022	2457,16	4,48	0,368	0,136	0,16	Fratura Estavel
2	1,44	20,00	0,289	0,050	2197,39	2,12	1327,66	232,12	0,00	Fratura Estavel
3	4,74	20,00	0,039	0,020	2204,69	6,29	0,009	0,005	4,37	Fratura Instável
4	3,11	20,00	0,062	0,027	2441,10	5,37	0,050	0,022	1,24	Fratura Instável
5	4,39	20,00	0,070	0,034	3106,16	5,91	0,033	0,016	2,10	Fratura Instável
6	4,82	20,00	0,047	0,025	2125,81	6,48	0,007	0,004	6,77	Fratura Instável
7	2,76	20,00	0,068	0,037	2265,10	6,58	0,010	0,005	7,08	Fratura Instável
8	2,39	20,00	0,043	0,020	2388,63	5,66	0,030	0,014	1,43	Fratura Instável
9	2,90	20,00	0,049	0,025	2205,57	6,09	0,014	0,007	3,53	Fratura Instável
10	3,14	20,00	0,008	0,004	2048,01	5,51	0,025	0,011	0,32	Fratura Estavel
11	2,68	20,00	0,043	0,020	2243,90	5,53	0,031	0,014	1,37	Fratura Instável

Poço	C _P (ft/s)	<i>µ</i> (ср)	∀r (ft/s)	∀r,s (ft/s)	Pc,net, (Psi)	Wr	∀c (ft/s)	∨e,s (ft/s)	Vr / Vc	Condição
7-CP-0370-SE	3,90	20,00	0,058	0,021	1696,77	4,43	0,136	0,050	0,43	Fratura Estavel
7-CP-1350-SE	4,37	20,00	0,088	0,035	2378,57	4,82	0,141	0,056	0,63	Fratura Estavel
7-CP-1322-SE	2,56	20,00	0,026	0,010	1943,05	4,57	0,147	0,055	0,18	Fratura Estavel
7-CP-1392-SE	4,58	20,00	0,037	0,015	1968,46	4,94	0,063	0,026	0,59	Fratura Estavel
7-CP-1414-SE	4,86	20,00	0,032	0,013	1819,34	4,99	0,046	0,019	0,69	Fratura Estavel
7-CP-1300-SE	2,45	20,00	0,040	0,016	3077,10	4,75	0,360	0,141	0,11	Fratura Estavel
7-CP-1488-SE	3,80	20,00	0,057	0,022	1972,76	4,60	0,138	0,052	0,42	Fratura Estavel
7-CP-1145-SE	3,63	20,00	0,041	0,016	2170,76	4,67	0,157	0,060	0,26	Fratura Estavel
7-CP-0079-SE	3,59	20,00	0,009	0,004	1979,46	4,97	0,062	0,025	0,14	Fratura Estavel
7-CP-1311-SE	2,15	20,00	0,042	0,017	2017,05	4,90	0,079	0,032	0,53	Fratura Estavel
7-CP-0037-SE	4,00	20,00	0,019	0,010	1786,17	6,23	0,008	0,004	2,51	Fratura Instável

Tabela 5.9 – Parâmetros da fratura e resultados obtidos com o modelo de potência nos poços onde ocorreu produção de propante.

SGp		3,56												
	dp (in)	W (in)	ρp(lb/ft3)	ρp(lb/ft3)	µf (ср)	V (ft/s)	Rf	d/Wmax	Rft	d/W	Wr	W	W/Wr	Condição
7-CP-0370-SE	0,038	0,18	54	128	20	0,021	3,93	0,177	73,60	0,017	57,536	4,78	0,08	Sem Refluxo
7-CP-1350-SE	0,038	0,20	54	128	20	0,035	7,02	0,177	73,60	0,022	46,215	5,20	0,11	Sem Refluxo
7-CP-1322-SE	0,038	0,19	54	128	20	0,010	1,89	0,177	73,60	0,016	63,926	4,93	0,08	Sem Refluxo
7-CP-1392-SE	0,038	0,20	54	128	20	0,015	3,12	0,177	73,60	0,017	60,329	5,33	0,09	Sem Refluxo
7-CP-1414-SE	0,038	0,20	54	128	20	0,013	2,70	0,177	73,60	0,016	61,679	5,38	0,09	Sem Refluxo
7-CP-1300-SE	0,038	0,19	54	128	20	0,016	3,11	0,177	73,60	0,017	60,353	5,12	0,08	Sem Refluxo
7-CP-1488-SE	0,038	0,19	54	128	20	0,022	4,16	0,177	73,60	0,018	56,712	4,97	0,09	Sem Refluxo
7-CP-1145-SE	0,038	0,19	54	128	20	0,016	3,08	0,177	73,60	0,017	60,45	5,03	0,08	Sem Refluxo
7-CP-0079-SE	0,038	0,20	54	128	20	0,004	0,75	0,177	73,60	0,015	66,131	5,36	0,08	Sem Refluxo
7-CP-1311-SE	0,038	0,20	54	128	20	0,017	3,47	0,177	73,60	0,017	59,164	5,29	0,09	Sem Refluxo
7-CP-0037-SE	0,038	0,26	54	128	20	0,010	2,54	0,177	73,60	0,016	62,145	6,73	0,11	Sem Refluxo

Dados do Proppant 12/20

3,56

Dados do Proppant 16/30

SGp

	dp (in)	W (in)	ρp(lb/ft3),	op (lb/ft3)	μf (cp)	V (ft/s)	Rf	dWmax	Rft	d/W	Wr	W	W/Wr	Condição
7-CP-0370-SE	0,041	0,18	54	128	20	0,021	3,93	0,177	85,68	0,017	59,434	4,43	0,07	Sem Refluxo
7-CP-1350-SE	0,041	0,20	54	128	20	0,035	7,02	0,177	85,68	0,020	49,722	4,82	0,10	Sem Refluxo
7-CP-1322-SE	0,041	0,19	54	128	20	0,010	1,89	0,177	85,68	0,015	64,548	4,57	0,07	Sem Refluxo
7-CP-1392-SE	0,041	0,20	54	128	20	0,015	3,12	0,177	85,68	0,016	61,701	4,94	0,08	Sem Refluxo
7-CP-1414-SE	0,041	0,20	54	128	20	0,013	2,70	0,177	85,68	0,016	62,778	4,99	0,08	Sem Refluxo
7-CP-1300-SE	0,041	0,19	54	128	20	0,016	3,11	0,177	85,68	0,016	61,72	4,75	0,08	Sem Refluxo
7-CP-1488-SE	0,041	0,19	54	128	20	0,022	4,16	0,177	85,68	0,017	58,757	4,60	0,08	Sem Refluxo
7-CP-1145-SE	0,041	0,19	54	128	20	0,016	3,08	0,177	85,68	0,016	61,797	4,67	0,08	Sem Refluxo
7-CP-0079-SE	0,041	0,20	54	128	20	0,004	0,75	0,177	85,68	0,015	66,256	4,97	0,07	Sem Refluxo
7-CP-1311-SE	0,041	0,20	54	128	20	0,017	3,47	0,177	85,68	0,016	60,761	4,90	0,08	Sem Refluxo
7-CP-0037-SE	0,041	0,26	54	128	20	0,010	2,54	0,177	85,68	0,016	63,148	6,23	0,10	Sem Refluxo

Tabela 5.10 - Parâmetros da fratura e resultados obtidos com o modelo de potência nos poços onde não ocorreu produção de propante.

Dados do	Proppant	t 16/30												
SGp		3,56												
	dp (in)	W (in)	ρp (lb/ft3)	ρp (lb/ft3)	μf (cp)	V (ft/s)	Rf	d/Wmax	Rft	d/W	Wr	W	W/Wr	Condição
Poçő 1	0,038	0,184	54	128	20,00	0,022	4,02	0,177	73,60	0,017	229, 57	4,84	0,08	Sem Refluxo
Poçő 2	0,038	0,087	54	128	20,00	0,050	4,46	0,177	73,60	0,018	55,618	2,29	0,04	Sem Refluxo
Poçő 3	0,038	0,258	54	128	20,00	0,020	5,30	0,177	73,60	0,019	52,525	6,79	0,13	Sem Refluxo
Poçő 4	0,038	0,220	54	128	20,00	0,027	6,07	0,177	73,60	0,020	49,664	5,79	0,12	Sem Refluxo
Poçő 5	0,038	0,242	54	128	20,00	0,034	8,43	0,177	73,60	0,024	41,464	6,38	0,15	Sem Refluxo
Poçő 6	0,038	0,266	54	128	20,00	0,025	6,74	0,177	73,60	0,021	47,215	6,99	0,15	Sem Refluxo
Poçő 7	0,038	0,270	54	128	20,00	0,037	10,11	0,177	73,60	0,027	36,4	7,10	0,20	Sem Refluxo
Poçő 8	0,038	0,232	54	128	20,00	0,020	4,72	0,177	73,60	0,018	54,667	6,11	0,11	Sem Refluxo
Poçő 9	0,038	0,250	54	128	20,00	0,025	6,24	0,177	73,60	0,020	49,023	6,57	0,13	Sem Refluxo
Poçő 10	0,038	0,226	54	128	20,00	0,004	0,84	0,177	73,60	0,015	66,006	5,94	0,09	Sem Refluxo
Poçő 11	0,038	0,227	54	128	20,00	0,020	4,50	0,177	73,60	0,018	55,497	5,97	0,11	Sem Refluxo

Dados do Proppant 12/20 SGp 3,56

SGp

	dp (in)	W (in)	ρp(lb/ft3)) pp(lb/ft3)	μf (cp)	V (ft/s)	Rf	dWmax	Rft	d/W	Wr	W	W/Wr	Condição
Poçő 1	0,051	0,184	54	128	20,00	0,022	4,02	0,181	132,57	0,016	62,954	4,48	0,07	Sem Refluxo
Poçő 2	0,051	0,087	54	128	20,00	0,050	4,46	0,181	132,57	0,016	62,239	2,12	0,03	Sem Refluxo
Poçő 3	0,051	0,258	54	128	20,00	0,020	5,30	0,181	132,57	0,016	60,788	6,29	0,10	Sem Refluxo
Poçő 4	0,051	0,220	54	128	20,00	0,027	6,07	0,181	132,57	0,017	59,347	5,37	0,09	Sem Refluxo
Poçő 5	0,051	0,242	54	128	20,00	0,034	8,43	0,181	132,57	0,018	54,58	5,91	0,11	Sem Refluxo
Poçő 6	0,051	0,266	54	128	20,00	0,025	6,74	0,181	132,57	0,017	58,028	6,48	0,11	Sem Refluxo
Poçő 7	0,051	0,270	54	128	20,00	0,037	10,11	0,181	132,57	0,020	51,052	6,58	0,13	Sem Refluxo
Poçő 8	0,051	0,232	54	128	20,00	0,020	4,72	0,181	132,57	0,016	61,804	5,66	0,09	Sem Refluxo
Poçő 9	0,051	0,250	54	128	20,00	0,025	6,24	0,181	132,57	0,017	59,01	6,09	0,10	Sem Refluxo
Poçő 10	0,051	0,226	54	128	20,00	0,004	0,84	0,181	132,57	0,015	66,43	5,51	0,08	Sem Refluxo
Poçő 11	0,051	0,227	54	128	20,00	0,020	4,50	0,181	132,57	0,016	62,184	5,53	0,09	Sem Refluxo

5.7. PARÃMETROS NECESSÁRIOS PARA ANÁLISE DO REFLUXO

As seguintes informações, medidas em campo ou calculadas, são necessárias para uma análise das condições que determinam ou não a ocorrência de refluxo do material de sustentação de fraturas hidráulicas:

a) Dados das operações no poço:

- pressão de injeção
- condição padrão: temperatura e pressão
- temperatura no fundo do poço
- profundidade e ângulo de inclinação
- propriedades do óleo na condição padrão: densidade API e vazão

sendo possível então calcular:

- pressão no fundo do poço
- densidade e viscosidade do óleo no fundo do poço

b) Dados do fraturamento hidráulico

- Raio do reservatório re
- Coeficiente de permeabilidade do reservatório k
- Tensão de fechamento final no fundo do poço Pc, net
- Altura (espessura) da zona de produção hp
- Dados do propante

Massa M_p Diâmetro médio d_p Tipo de propante Porosidade ϕ_{pp} Densidade dos grãos SG_p Permeabilidade do pacote granular k_f

sendo possível então calcular

- Volume de propante injetado *Vi*
- Volume de propante depositado na fratura V_{fp}

- Altura da fratura h_f
- Valor ótimo do coeficiente adimensional de condutividade C_{fD}
- Número de propante N_p
- Índice ótimo de produtividade *J*_D
- Largura ótima de propante W_p
- O comprimento ótimo de cada asa da fratura x_f

Observação: as dimensões da fratura podem ser obtidas também diretamente dos relatórios de tratamento do poço feita pelas equipes de campo.

Com base nas dimensões da fratura (fornecidas ou calculadas) pode-se então estimar:

- Largura média da fratura
- Largura máxima da fratura

c) Determinação da estabilidade do pacote granular

Com base nas informações anteriores determina-se:

- Gradiente de pressão na fratura dP/dx
- Velocidade de Darcy V
- Tensão final de fechamento da fratura $P_{c,net}$

c.1) No caso do modelo Stimlab

• Velocidade crítica Vc

c.2) No caso do modelo de cunha livre

- Termo de arraste *F*
- Termo de fechamento *C*
- Largura normalizada estável máxima $W_{r,max}$

c.3) No caso do modelo semi-mecânico

- Termo de largura da fratura W_T
- Termo da resistência do propante S_T
- Gradiente de pressão mínimo para fluidificação *F_{FV}*
- Máximo gradiente de pressão estável *F*_{sta}

c.4) No caso do modelo de potência

- Número de Reynolds R_f •
- Número de Reynolds crítico R_{ft} •
- Relação diâmetro / largura d/W •

5.7.1 Quantidades calculadas neste estudo

As tabelas 5.11 e 5.12 mostram os valores das quantidades utilizadas para a execução das retroanálises apresentadas neste capítulo. Alguns destes valores foram fornecidos pela Petrobrás, com base no projeto de fraturamento hidráulico e dados de campo levantados durante a produção do poço, enquanto que outros foram calculados através das diversas formulações apresentadas nesta pesquisa.

Tabela 5.11 Dados do projeto de fraturamento hidráulico e informações de campo (Petrobrás, 2004).

Calculo dos Parametros com valores do Campo												
	Dados do Pro	Dados do Propante										
	Parametro	Magnitude	Uni									
	фрр	33%										
	SGp	3,56										
	kf	500000 n	ηD									

Coff

POÇOS QUE NÃO PRODUZIRAM BAUXITA

	0,0	
	500000	тD
-rat)	1,2	lb∕s ft

POCOS QUE P	Dados da Fratura POÇOS QUE PRODUZIRAM BAUXITA														
n°	re (ft)	øt	hp (ft)	xe (ft)	k (mD)	Mp(lb)	Mr(lb)	Q (scf/D)	BHT(°F						
1	350	8%	49,54	620,20	50	30.000	21.648	1.413	124						
2	350	20%	55,77	620,20	100	35.000	2.676	1.766	120						
3	350	12%	42,29	620,20	100	78.200	67.570	3.179	120						
4	350	13%	82,02	620,20	100	52.800	25.683	3.532	120						
5	350	17%	39,37	620,20	150	43.700	22.440	3.532	120						
6	350	18%	32,81	620,20	100	74.000	68.251	3.532	120						
7	350	15%	19,69	620,20	150	46.400	36.855	3.532	120						
8	350	14%	65,62	620,20	150	50.400	48.339	3.956	120						
9	350	20%	44,29	620,20	100	60.300	55.202	3.532	120						
10	350	15%	49,21	620,20	30	59.900	59.032	353	130						
11	350	13%	49,21	620,20	100	53.500	51.331	2.826	120						

	re (ft)	øf	hp (ft)	xe (ft)	k (mD)	Mp(lb)	Mrlb)	Q (scf/D)	BHT(°F)
n°									
7-CP-0370-SE	350	15%	26,25	620,20	30	38.000	38.000	1.236	90
7-CP-1350-SE	350	14%	26,25	620,20	50	30.400	30.400	2.119	120

7-CF-0370-3E	000	1070	: 20,20	020,20	JU	; 30.000	100.000	1.200	00
7-CP-1350-SE	350	14%	26,25	620,20	50	30.400	30.400	2.119	120
7-CP-1322-SE	350	17%	27,26	620,20	226	30.500	30.500	1.236	124
7-CP-1392-SE	350	16%	39,37	620,20	100	41.400	41.400	1.766	120
7-CP-1414-SE	350	18%	82,02	620,20	50	107.400	107.400	2.649	120
7-CP-1300-SE	350	11%	71,03	620,20	26	87.600	87.600	2.119	120
7-CP-1488-SE	350	15%	39,37	620,20	150	54.400	54.400	3.532	120
7-CP-1145-SE	350	15%	55,77	620,20	50	87.800	87.800	2.472	120
7-CP-0079-SE	350	18%	65,62	620,20	961	117.500	117.500	2.826	120
7-CP-1311-SE	350	14%	88,58	620,20	30	140.500	140.500	3.532	115
7-CP-0037-SE	350	12%	55,77	620,20	30	132.000	132.000	1.766	112

Tabela 5.12 – Parâmetros da fratura calculados neste estudo, com base nos critérios de dimensionamento ótimo (Romero, Valkó e Economides, 2002).

n ^o	Vre (ft3)	Vi (ft3)	Vfp(ft3)	Np	Jø	Pc,net (Psi)	Cfd	hf (ft)	Xf (ft)	W (in)	W reat (in)	V (ft/s)
1	19065533,46	100,62	72,61	0,15	0,52	2457,16	1,60	68,65	95,71	0,18	0,18	0,0216
2	21464507,87	117,39	8,98	0,01	0,30	2197,39	1,64	75,30	22,18	0,09	0,09	0,0505
3	16275147,44	262,28	226,63	0,28	0,61	2204,69	1,72	48,94	249,37	0,52	0,26	0,0202
4	31565452,76	177,09	86,14	0,05	0,41	2441,10	1,60	168,62	57,29	0,22	0,22	0,0272
5	15151417,32	146,57	75,26	0,07	0,43	3106,16	1,60	76,67	94,66	0,36	0,24	0,0343
6	12626181,10	248,20	228,92	0,36	0,67	2125,81	1,78	35,57	315,09	0,60	0,27	0,0250
7	7575708,66	155,63	123,61	0,22	0,57	2265,10	1,68	24,78	279,26	0,67	0,27	0,0369
8	25252362,20	169,04	162,13	0,09	0,45	2388,63	1,64	68,41	127,70	0,42	0,23	0,0200
9	17045344,49	202,25	185,15	0,22	0,57	2205,57	1,68	48,38	200,93	0,45	0,25	0,0246
10	18939271,65	200,91	198,00	0,70	0,85	2048,01	2,11	49,94	213,73	0,27	0,23	0,0037
11	18939271,65	179,44	172,16	0,18	0,54	2243,90	1,65	51,29	185,09	0,41	0,23	0,0195

Análise com 100% do peso total de propante injetado

n°	Vre (ft3)	Vi (ft3)	Vfp(ft3)	Np	Jø	Pc,net (Psi)	Cfd	hf (ft)	Xf (ft)	W (in)	W reat (in)	V (ft/s)
7-CP-0370-SE	10100944,88	127,45	127,45	0,841	0,929	1696,77	2,24	26,25	237,49	0,31	0,25	0,021
7-CP-1350-SE	10100944,88	101,96	101,96	0,404	0,693	2378,57	1,83	26,25	174,63	0,32	0,27	0,035
7-CP-1322-SE	10492356,50	102,30	102,30	0,086	0,451	1943,05	1,64	27,26	178,07	0,63	0,25	0,010
7-CP-1392-SE	15151417,32	138,86	138,86	0,183	0,544	1968,46	1,66	39,37	154,83	0,41	0,27	0,015
7-CP-1414-SE	31565452,76	360,22	360,22	0,456	0,724	1819,34	1,88	82,02	190,83	0,35	0,28	0,013
7-CP-1300-SE	27335682,09	293,81	293,81	0,827	0,922	3077,10	2,23	71,03	188,87	0,26	0,26	0,016
7-CP-1488-SE	15151417,32	182,46	182,46	0,161	0,525	1972,76	1,64	39,37	218,23	0,57	0,25	0,022
7-CP-1145-SE	21464507,87	294,48	294,48	0,549	0,775	2170,76	1,97	55,77	245,36	0,39	0,26	0,016
7-CP-0079-SE	25252362,20	394,10	394,10	0,032	0,370	1979,46	1,64	65,62	262,20	1,65	0,27	0,004
7-CP-1311-SE	34090688,98	471,24	471,24	0,922	0,970	2017,05	2,31	88,58	235,20	0,33	0,27	0,017
7-CP-0037-SE	21464507,87	442,73	442,73	1,375	1,204	1786,17	2,93	55,77	276,04	0,45	0,35	0,010

Análise com 80% do peso total de propante injetado

n°	Vre (ft3)	Vi (ft3)	Vfp(ft3)	Np	Jø	Pc,net (Psi)	Cfd	hf (ft)	Xf (ft)	W (in)	W reat (in)	V (ft/s)
7-CP-0370-SE	10100944,88	127,45	101,96	0,673	0,842	1696,77	2,24	32,81	271,89	0,27	0,14	0,024
7-CP-1350-SE	10100944,88	101,96	81,57	0,323	0,643	2378,57	1,83	32,81	234,30	0,29	0,13	0,039
7-CP-1322-SE	10492356,50	102,30	81,84	0,069	0,430	1943,05	1,64	34,08	222,97	0,57	0,13	0,011
7-CP-1392-SE	15151417,32	138,86	111,09	0,147	0,513	1968,46	1,66	49,21	207,72	0,37	0,13	0,017
7-CP-1414-SE	31565452,76	360,22	288,18	0,365	0,669	1819,34	1,88	102,53	273,10	0,31	0,12	0,015
7-CP-1300-SE	27335682,09	293,81	235,05	0,661	0,836	3077,10	2,23	88,79	253,39	0,24	0,13	0,018
7-CP-1488-SE	15151417,32	182,46	145,97	0,128	0,496	1972,76	1,64	49,21	273,26	0,51	0,13	0,024
7-CP-1145-SE	21464507,87	294,48	235,59	0,439	0,713	2170,76	1,97	69,72	277,97	0,35	0,15	0,018
7-CP-0079-SE	25252362,20	394,10	315,28	0,026	0,355	1979,46	1,64	82,02	275,56	1,48	0,17	0,004
7-CP-1311-SE	34090688,98	471,24	376,99	0,737	0,875	2017,05	2,31	110,73	271,72	0,29	0,15	0,019
7-CP-0037-SE	21464507,87	442,73	354,18	1,100	1,061	1786,17	2,93	69,72	275,38	0,40	0,22	0,011